

IMPACT OF LIFT METHODS AND SHUTIN TECHNIQUES ON WELLTEST ANALYSIS IN GEOTHERMAL WELLS

Pieter Bruijnen - EBN B.V.

SCAN WELL 'ORANJEOORD-01'

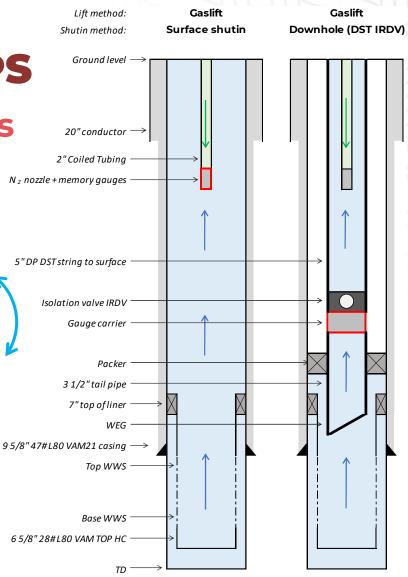
Well test objectives

- 1. Testing the <u>reservoir</u> and <u>wellbore damage</u>
- 2. Testing shutin techniques
 - Surface shutin
 - Downhole shutin

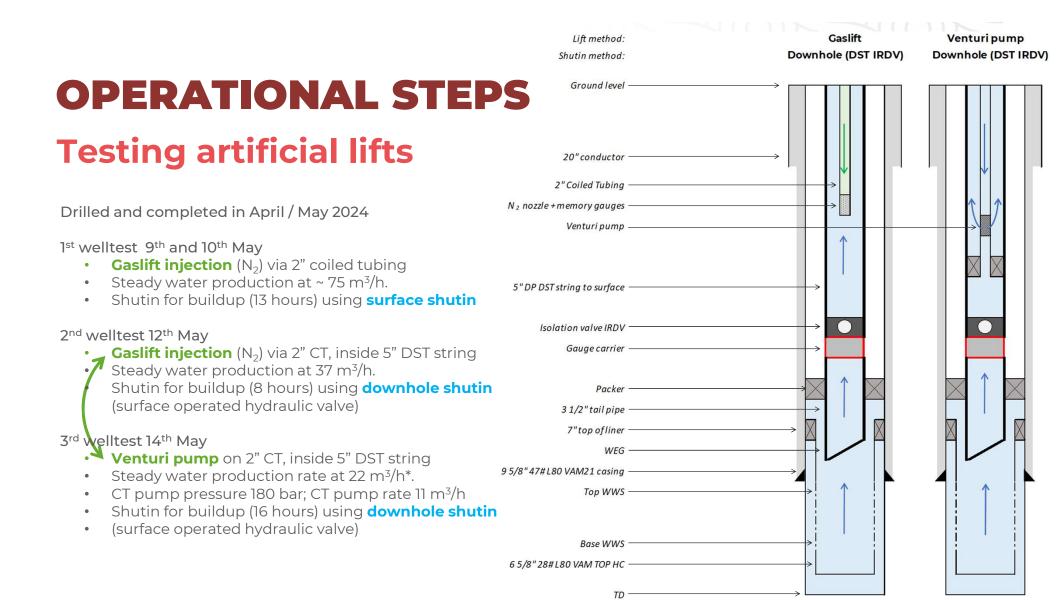
This presentation

- 3. Testing artificial lift methods
 - Gaslift
 - Venturi pump
- 4. Testing <u>modes</u> (production / buildup / injection / falloff)
- 5. Testing impact of <u>injection temperature</u> in injection tests

OPERATIONAL STEPSTesting shutin techniques

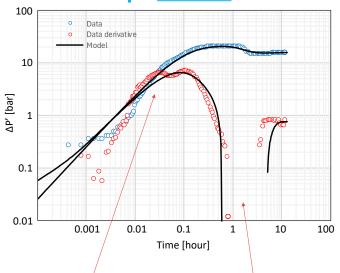

Drilled and completed in April / May 2024

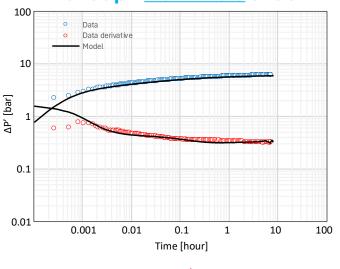
1st welltest 9th and 10th May


- **Gaslift injection** (N₂) via 2" coiled tubing
- Steady water production at ~ 75 m³/h.
- Shutin for buildup (13 hours) using surface shutin

2nd welltest 12th May

- Gaslift injection (N₂) via 2" CT, inside 5" DST string
- Steady water production at 37 m³/h.
- Shutin for buildup (8 hours) using downhole shutin (surface operated hydraulic valve)



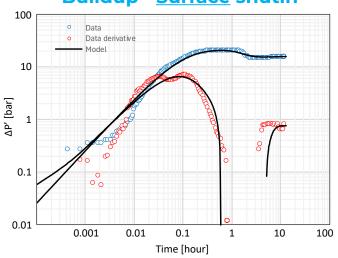


RESULTS SHUTIN TECHNIQUES

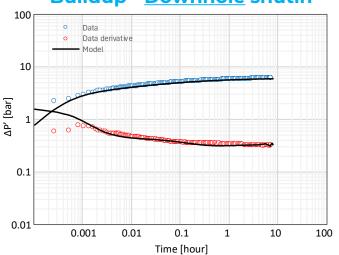
Buildup - Surface shutin

Buildup - Downhole shutin

Data: major double-hump dominates the first part of the graph. What is this? **Data**: off-scale between 0.8 and 2 hours (or 0.2 to 5 if transition periods are included). This translates to a radius of investigation of 400 meter; or 800 meter diameter.


All the geology within this 800 m circle is invisible in this welltest.

Data: all just fine

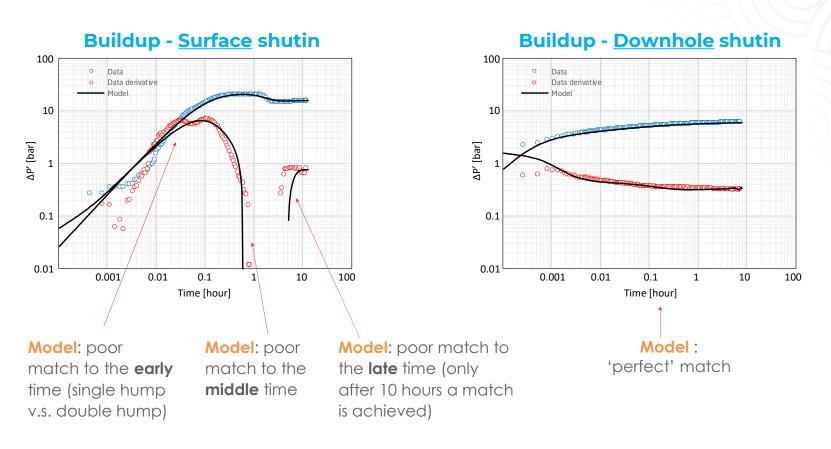


RESULTS SHUTIN TECHNIQUES

Buildup - Downhole shutin

Changing wellbore storage model
(automatic regression)

Mechanical skin = 2


Vertical limited entry well model (effective perforation length = 130.4 m; reservoir thickness = 177 m.

Homogenous reservoir model (kh = 22 Dm)

Infinite boundary model (no faults)

RESULTS SHUTIN TECHNIQUES

Match is very poor with a surface shutin, but changing the skin, kh, etc is not justified!

SHUTIN TECHNIQUES

Conclusions

Surface shutin:

- · Wellbore storage dominates the buildup period
- · Wellbore storage obscures skin, kh and faults
- Tests executed with surface shutin will undoubtedly lead to incorrect interpretations
- Surface shutin should not be used for low enthalpy geothermal wells!

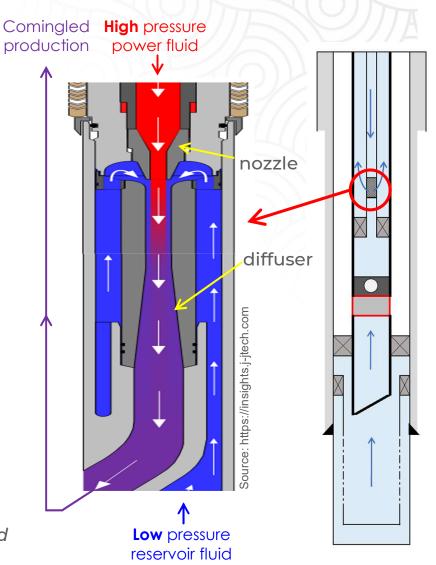
Downhole shutin:

- · Clean reservoir signal
- Free of unwanted noise
- Reliable interpretation
- Downhole shutin should <u>always</u> be used for low enthalpy geothermal wells!

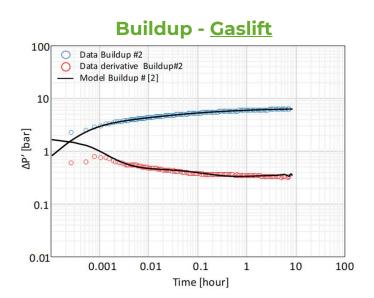
Note: additional modelling and evidence for the necessity of downhole shutin in geothermal wells: Bruijnen, P. "Numerical and analytical modelling of wellbore storage effects in low enthalpy geothermal welltests". EAGE Geoenergy (in press, 2024 or 2025)

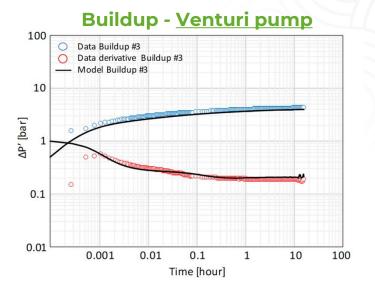
VENTURI PUMP

New lift method for welltests


Working principle

- Power fluid (water) pumped from surface into well at high pressure.
- Power fluid is directed into nozzle → velocity increases, pressure drops (venturi effect) → reservoir fluids enter venturi pump and comingle with power fluid
- Comingled fluid enters diffuser → velocity decreases → pressure increases → lifting capacity


Advantages venturi pump for well testing purposes:


- + Simple design, no moving downhole parts
- + Rig equipment can be used (pumps, tubing, etc)
- + Minimal additional surface footprint (no VSD, no electricity, no N₂ pumps, no large separator etc.)
- + Cost reduction!

Note: Q_water for 3rd SCAN well "Heesch-01" is anticipated to be max 230 m³/h

RESULTS ARTIFICIAL LIFT METHODS

Constant wellbore storage model

Mechanical skin = 2

Vertical limited entry well model (effective perforation length = 130.4 m; reservoir thickness = 177 m.

Homogenous reservoir model (kh = 22 Dm)

Infinite boundary model (no faults)

ARTIFICIAL LIFT METHODS

Conclusions

- The choice of artificial lift has <u>no impact</u> at all on the quality of the data (provided that a downhole shutin is applied).
- · Venturi pump is a good alternative for testing geothermal wells
 - In terms of data quality: equally good
 - In terms of costs: (possibly) cheaper than the alternatives (gaslift, ESP)

RECOMMENDATIONS

For all geothermal welltests

Shutin techniques

• Surface shutin: <u>don't do it</u>

• Downhole shutin: highly recommended, always!

Artificial lift methods

Gaslift: works fine

Venturi pump: works fine + cost reduction

THANK YOU!

Questions?

